

RX/TX CONVERTER

SPECIFICATIONS

51 Een 16/11/6/15				
Supply Source (Vcc)	5 to 24 VDC			
Current Consumption	20 mA max (plus encoder and output load requirements)			
Max Frequency	Up to 1 MHz			
Enclosure	IP54 (dust proof)			
Earth Circuit	Grounded to Case			
Input Voltage	Channel 1: 24 VDC Max Diff			
	Channel 2: 5 VDC Max			
Output Voltage	Channel 1: Vcc			
	Channel 2: 5 VDC or Vcc			
Output Current	30 mA/Channel Max			

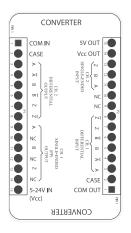
FEATURES

The RX/TX Converter converts a Push-Pull or NPN encoder output to an RS422 compatible differential Line Driver output. In addition, it will also convert Line Driver/RS422 encoder output to single ended signals (Push-Pull) for compatibility with certain PLC's.

Each converter has two independent channels: Channel 1 is equipped with a differential Line Receiver on the input. It then converts these differential signals (A, A', B, B', Z, Z') to Push-Pull output signals (A, B, Z), with an amplitude equivalent to Vcc.

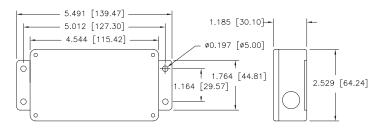
Channel 2 will convert single ended signals from a Push-Pull or NPN Open Collector encoder to Differential Line Driver signals. Differential Line Driver signals include complementary outputs A', B', and Z' which offer greater immunity to electrical noise, signal distortion, and interference, especially with long cable runs.

APPLICATIONS


To provide differential signals for data transmission over long distances between a push-pull, or NPN open collector transmitter and receiver. To enable devices with different output/input circuits to be connected. To properly terminate differential signals to eliminate/reduce signal distortions.

RX/TX CONVERTER ORDERING INFORMATION

(Specify stock # when ordering) Differential = A,A', B,B', Z,Z' Single Ended = A, B, Z


Stock #	Channel 1		Channel 2	
	INPUT	OUTPUT	INPUT	OUTPUT
	Differential Line Receiver MAX 3095	Single Ended Push Pull Output 7272	Single Ended 7272	Differential Line Driver 7272
100020-1	5V	Vcc ³	5V, OC1	Vcc ³
100020-2	5V	Vcc ³	5V, OC ¹	5V
100020-3	5V	Vcc ³	5V ²	Vcc ³
100020-4	5V	Vcc ³	5V ²	5V
100020-5	6-12V	Vcc ³	5V, OC ¹	Vcc ³
100020-6	6-12V	Vcc ³	5V, OC ¹	5V
100020-7	6-12V	Vcc ³	5V ²	Vcc ³
100020-8	6-12V	Vcc ³	5V ²	5V
100020-9	13-24V	Vcc ³	5V, OC ¹	Vcc ³
100020-10	13-24V	Vcc ³	5V, OC ¹	5V
100020-11	13-24V	Vcc ³	5V ²	Vcc ³
100020-12	13-24V	Vcc ³	5V ²	5V

¹OC- Open Collector input designed with a 2k pull-up resistor for an open collector output encoder or device.

NOTES UNLESS OTHERWISE SPECIFIED

- TERMINATE CABLE SHIELD/DRAIN WIRES
 TO THE CASE TERMINAL OF P1 AND P2,
 IF APPLICABLE. BARE CONDUCTORS MUST
 BE ELECTRICALLY INSULATED FROM THE CIRCUIT
 BOARD WITH A NONCONDUCTIVE SLEEVE SUCH AS
 HEAT SHRINK TUBING.
- 2. RECOMMENDED CABLE FOR DIFFERENTIAL/
 COMPLEMENTARY ENCODER SIGNALS:
 LOW CAPACITANCE, TWISTED-SHIELDED PAIR:
 SEE ACCESSORIES SECTION FOR 4XXC
 CABLES/CONNECTORS. 4XXC CABLES MUST HAVE
 OUTER INSULATION STRIPPED OFF IN ORDER TO FIT
 THROUGH CABLE ENTRY GLANDS.
- 3. SEE CONFIGURATION ORDERING GUIDE FOR INPUT/OUTPUT VOLTAGE PER THE SELECTED RXTX MODEL NUMBER
- 4. P2-14 (Vcc) or P2-15 (5V) CAN BE USED TO POWER ENCODER.
- 5. P1-15 (5-24VDC IN (Vcc)) IS FOR CUSTOMER SUPPLIED POWER TO OPERATE RXTX.

All dimensions are in inches with a tolerance of +0.005'' or +0.01'' unless otherwise specified. Metric dimensions are given in brackets [mm].

Page 1 of 1

²Inputs can be from devices with pull-up, push-pull or TTL type outputs.

³The outputs will be equivalent to voltage applied to Vcc (Pin P1-15). The input range for this pin is 5-24 VDC.